How to do binary conversions. Binary conversion with Examples!

HOW TO DO BINARY CONVERSIONS

To start binary conversions you should know that ,
The table of Decimal Starts from 0 and ends with 9
And Hexa starts with 0 & also ends with 9  but also includes A , B , C , D, E , F .. A for 10 , B for 11, C for 12 , D for 13 , E for 14 and F for 15.. The table of OCTAL starts from 0 and ends with 7 . BINARY has only two numbers or digits 1 & 0.

How to do binary conversions
How to convert from Binary to

1. BINARY TO DECIMAL :

  ( 1  0    1   1 )

How to do binary conversions
The number given is a binary number and you have to convert it in DECIMAL . First , you have to know that , To convert a number from binary to decimal you have to apply a formula  2n . 2 is the exponent and n is the power. We will put the number (0,1,2,3,4,...) in place of n and convert it from binary to decimal.
For example :
n=0 (2 power 0 is 1)
n=1 (2 power 1 is 2)
n=2 (2 power 2 is 4 )
n= 3 (2 power 3 is 8)

Now !!
Place these derived numbers with the given decimal number (1   0  1   1)
                       1      0      1      1
                       8      4      2      1
Now the rule says that if the number is ON (having 1 in binary) should be added and if the number having 0 must be cancelled..    
                       1       1        1
                       8  +   2  +    1  =  11 
In this case , we cancelled the number 4 because its binary number is OFF (having a zero) & add 8 , 2 and 1 because their Binary number is ON (having 1)
Our answer is 11 .. Which is a decimal of (1   0   1    1)
BUT ,
if the binary numbers are in points or decimal. How will you convert it into decimal?
Like, 
                 1     0     1  .   1   0    1 
You will solve this by writing in fractions(1/2, 1/4 , 1/8) after decimal & then add with the same method told above:
               1      0      1 .   1     0      1
               4      2      1    1/2  1/4    1/8
               4      +     1      1/2   +  1/8
         Ans:      5   5/8

2. DECIMAL TO BINARY :

1st Method :

Examples:

1. 11 

The conversion is same for decimal to binary . The only difference is we will inverse the process ..
                      8     4    2    1
Write such Binary numbers which make a sum of 11
                      8     4    2    1
                      1     0    1    1 
2. 28
                     16    8      4    2    1
                      1     1      1    0    0

2nd Method : (LCM Method)

Example :

1. 56
                  
How to convert by LCM Method

                 
In this method , we will take the LCM of the given number but only with 2 . Obviously the remainder is always not zero . The number written with a arrow is the remainder after dividing it from 2 now the answer will be  from tail to head of  the arrow . So , the answer is 111000.
2. 17
Binary Conversions
Answer :   10001 

3. BINARY TO HEXADECIMAL :

To convert it in HEXADECIMAL , divide the given binary number into two parts and add those whose binary number is ON(equal to 1)
Example #1:
                      
  1        0        1        0    1     0      1     1
                    
   8        4        2        1    8     4      2     1 
         8+2=10                    8+2+1=11
But, in Hexa 10=A and 11=B
Ans : AB

Example #2:

1 0 1 0  0 0 1 1  1 0 0 1  0 1 0 1
8 4 2 1  8 4 2 1  8 4 2 1  8 4 2 1
8+2=10  2+1=3  8+1=9  4+1=5
But ,
10=A in HexaDecimal 
Ans = A395

4.HEXADECIMAL TO BINARY:

Example:
                                 F                5 = ?
                             8  4   2   1    8   4   2   1
  (As F =15... 8+4+2+1=15 & 4 +1)
                       Ans:    1   1    1    1   0   1   0   1 

5. OCTAL TO BINARY:

Example # 1:
*72
Solve:
                     7             2
                 4  2  1         4  2  1
                 1  1  1         0  1  0
Example # 2:
 *28
The number 28 can't convert to BINARY because the range of octal is 0-7 & when we can only use 4 2 1 for conversion . And 4 2 1 gives a sum of 7. So, we can't convert a number which is greater than 7 in OCTAL to BINARY conversion.
Example # 3:
*123
Solve:
              1         2          3
           4 2 1     4 2 1    4 2 1
           0 0 1     0 1 0    0 1 1

6. HEXA TO DECIMAL :

For Hexa  conversion , we will not use 2 power n formula we will use 16n(16 power n)
Then , we will solve with 
n=0(1)
n=1(16)
n=2(256)
n=3(4096)
Example :
*Convert 45 into Decimal ?
                       4             5
                      16            1
Then , multiply both, Like,
4*16=64 & 5*1=5
Add the answers ,
64 + 5 = 69

7.OCTAL TO DECIMAL :

We will use 8 power n formula for Octal conversions
8n  ➝   512   64   8  1 
Example:
                     
                  2      2       3
                 64     8       1
Multiply,
2*64=128 
2*8=16
3*1=3
Then Add the results
128+16+3=147
Answer : 147 

ARITHMETIC IN BINARY :

   0              1             0              1
+ 0          + 0        +   1          +  1
   ã…¡            ã…¡            ã…¡             ã…¡  
   0             1             1              10
Example # 1:

1   0   1
1   1   0
---------
10 1   1
Example #2:

1  0
1  1
-----
10  1
Example #3:
1  1  0
0  1  0
--------
10 0  0

Example #4:
            1     0     1     0    1     1        1
     +     1     0     0     1    0     1        1
            -----------------------------------
            10   1    0       0    0     1       0 
           ------------------------------------

*******------------------**********--------*******
I tried my level best to guide you in Binary Conversion but if you find any difficulty then you are free to ask in the comment section.
----------
How to do binary conversions
How to do binary conversions
How to do binary conversions
How to do binary conversions
How to do binary conversions
---------
Everything @WorldTrueSight

Post a Comment

3 Comments

  1. I really loved this article! It gave me some new insights I never really thought about before.
    Pay Per Click

    ReplyDelete
  2. This post is really valuable that designed for the new visitors. Pleasing work, keep on writing.
    Pocket Pussy

    ReplyDelete
  3. When I have learnt about this theme for the first time, it seemed very difficult for me. It took less than an hour to understand it all perfectly.

    ReplyDelete